(999+)
企信指数
2019-01-29
375
扫一扫,查看更多
更新时间:
浏览
注册信息
统一社会信用代码: 913101177480708342 企业名称: 上海地西地磁电设备有限公司 类型: 有限责任公司
法定代表人: 任玉亭 注册资本: 171 成立日期: 2003-03-17
经营期限自: 2003-03-17 经营期限至: 2024-12-21 登记机关: 松江市监局
核准日期: 2003-03-17 登记状态: 在营(开业) 发照日期: 2003-03-17
注册地址: 上海市松江区九亭镇涞寅路1881号9幢
经营范围: 脉冲磁化设备、磁检测设备及功率器件的生产、销售。【依法须经批准的项目,经相关部门批准后方可开展经营活动】
公司简介

上海地西地磁电设备有限公司(前身原哈尔滨先达电子公司)是专业研制和生产脉冲充磁、退磁机、充磁夹具及磁场分布测量仪等磁气设备。公司*初发展在八十年代初期哈工大,于2003年,公司与日本EMIC合资在上海生产高端机型、依托哈尔滨工业大学、日本EMIC公司的强大技术支持以及自身多年的制造经验,公司的充(退)磁、磁检技术一直在国内同行业中居于领先地位、拥有研发多项自主产权,目前生产的有合资高端型和自主品牌型。
    公司生产的充磁机能够满足迄今所有永磁材料的充磁要求,高输出电流,低输出阻抗,选用历经500万次耐久性试验的主电容和SCR,性能可靠,抗衰耐用,充磁夹具的设计和制造,能够满足径向、轴向、辐向、多极、斜极等不同的充磁要求,并可根据需求进行智能定量充磁、装配充磁、整机充磁等多种充磁方式。磁场分布测量仪的研制,成功地实现了对圆形、环行磁件以及各种永磁电机产品磁场分布及磁通分布的在线检测,特别是对小极距磁件,即快捷又准确。

设备广泛用于各种永磁电机行业、新能源混合动力电动汽车、风力发电机、电声行业、通讯、航空、传感器、空调压缩机磁选机核磁共振仪和各种稀土类(铁氧体、钕铁硼、铝镍钴、钐钴、橡胶磁…)永磁材料的充磁。

 

上海地西地磁电设备有限公司将秉承“为客户创造价值”的理念,打造磁气设备的行业专家,用产品和服务铸就我们的品牌!

 

联系信息
基本联系方式
手机号: 021-67696822
邮箱:
上海地西地磁电设备有限公司
陈齐刚: 13472727877
电话: 021-37633793
邮箱: chenqigang@xiandaccj.com
上海地西地磁电设备有限公司
地址: 上海市松江区九亭镇涞寅路 1881号9幢
传真: 021-37633781
电话: 021-37633793
QQ: 2037734977
邮箱: chenqigang@xiandaccj.com
陈齐刚: 13472727877
产品展示
查看更多>>
通用多极充磁装置

通用多极充磁装置

产品描述
水冷2极弧极头充磁夹具(可移动调节)

水冷2极弧极头充磁夹具(可移动调节)

水冷2极弧极头充磁夹具(根据永磁马达产品的尺寸大小可移动调节覆盖多种规格产品的充磁技术要求)。
水冷内充斜极充磁夹具

水冷内充斜极充磁夹具

水冷内充斜极充磁夹具
隧道式充磁夹具

隧道式充磁夹具

隧道式充磁夹具
螺旋管充退磁线圈

螺旋管充退磁线圈

螺旋管充退磁线圈
单面轴向6极充磁夹具

单面轴向6极充磁夹具

单面轴向6极充磁夹具
磁场分布测量仪

磁场分布测量仪

用途本装置是用高斯计测量环状磁石(主要是马达的转子和定子)表面,对充磁状态进行评价的装置。解析数据除了测量各极峰值的**值、最小值、平均值,还可显示各极的角度、面积等数值,另外、X轴做为角度(Deg),Y轴做为磁通密度(Tesra),进行2次元显示;X轴做为角度(Deg),Y轴做为旋转轴轴向的位置,Z轴做为磁通密度(Tesra),进行3次元显示。特点充磁后的磁石表面磁通密度用探头测量、评价。2. 测量数据CSV形式输出,可导入常用计算软件内。3. 有圆筒评价用和平面评价用2种。规格型号表磁分析波形图
水冷单面轴向4极充磁夹具

水冷单面轴向4极充磁夹具

水冷单面轴向4极充磁夹具
高精度专用测量仪

高精度专用测量仪

特点1. 由程序控制,从测量开始到测量结束后的OK、NG判定,全部自动完成。2. 测量时探头移动由PC控制。3. 探头的定位调整距离最小为0.1mm。4. 同心度±0.01mm、平面度±0.02mm。5、PC画面显示项目状态显示:设备工作正常、设备通讯异常结果显示:**值、最小值、平均值、占空比等参数6、 PC、高斯计均为标准品。7、 旋转方向分辨力:5000p/r用途最适合磁性密封圈、磁性编码器等微小间距的测量。表磁分布三维在线分析波形图
多极斜极电机整体充磁及在线检测装置

多极斜极电机整体充磁及在线检测装置

特点全封闭式远控操作,安全性极高。2. 内部有温度系数换算功能,排除环境温度变化对磁场强度的影响。3. 充磁、测磁、退磁,一键完成,操作非常方便。4. 标配PLC控制,可导入自动线,由远控信号操作。用途各种多极电机整体充磁、测磁、退磁。规格型号
新闻动态
查看更多>>
成功案例
查看更多>>
充磁夹具7
充磁夹具7
充磁夹具7
充磁夹具9
充磁夹具9
充磁夹具9
促销信息
查看更多>>
技术支持
查看更多>>
聚磁效应---提高永磁电机性能的新途径​
聚磁效应---提高永磁电机性能的新途径​
聚磁效应---提高永磁电机性能的新途径
永磁体基本性能参数
永磁体基本性能参数
永磁材料:永磁材料被外加磁场磁化后磁性不消失,可对外部空间提供稳定磁场。钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1Gs =0.0001T将一个磁体在闭路环境下被外磁场充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的**的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中磁体的磁感应强度都小于剩磁。钕铁硼是现今发现的Br**的实用永磁材料。磁感矫顽力(Hcb)单位是安/米(A/m)和奥斯特(Oe)或1 Oe≈79.6A/m处于技术饱和磁化后的磁体在被反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是11000Oe以上。内禀矫顽力(Hcj)单位是安/米(A/m)和奥斯特(Oe)1 Oe≈79.6A/m使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,如果外加的磁场等于磁体的内禀矫顽力,磁体的磁性将会基本消除。钕铁硼的Hcj会随着温度的升高而降低所以需要工作在高温环境下时应该选择高Hcj的牌号。磁能积(BH)单位为焦/米3(J/m3)或高•奥(GOe) 1 MGOe≈7. 96k J/m3退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的**值称之为**磁能积(BH)max。磁能积是恒量磁体所储存能量大小的重要参数之一,(BH)max越大说明磁体蕴含的磁能量越大。设计磁路时要尽可能使磁体的工作点处在**磁能积所对应的B和H附近。各向同性磁体:任何方向磁性能都相同的磁体。各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能**的磁体。烧结钕铁硼永磁体是各向异性磁体。取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作 “取向轴”,“易磁化轴”。磁场强度:指空间某处磁场的大小,用H表示,它的单位是安/米(A/m),也有用奥斯特(Oe)作单位的。磁感应强度:磁感应强度B的定义是:B=μ0(H+M),其中H和M分别是磁化强度和磁场强度,而μ0是真空导磁率。磁感应强度又称为磁通密度,即单位面积内的磁通量。单位是特斯拉(T)。磁化强度:指材料内部单位体积的磁矩矢量和,用M表示,单位是安/米(A/m)。它与磁感应强度和磁场强度有如下关系B=(M+H)μ0在各向同性线性媒质中,磁化强度M和磁场强度H成正比,M=XmH, Xm是磁化率。上式可改写成B=(1+Xm)μ0H=μrμ0H=μH式中μ=μrμ0称媒质的磁导率;μr=1+χm称媒质的相对磁导率,为一纯数。磁通:给定面积内的总磁感应强度。当磁感应强度B均匀分布于磁体表面A时,磁通Φ的一般算式为Φ =B×A。磁通的SI单位是麦克斯韦。相对磁导率:媒介磁导率相对于真空磁导率的比值,即μr= μ/μo。在CGS单位制中,μo=1。另外,空气的相对磁导率在实际使用中往往值取为1,另外铜、铝和不锈钢材料的相对磁导率也近似为1。磁导:磁通Φ与磁动势F的比值,类似于电路中的电导。是反映材料导磁能力的一个物理量。磁导系数Pc:又为退磁系数,在退磁曲线上,磁感应强度Bd与磁场强度Hd的比率,即Pc =Bd/Hd,磁导系数可用来估计各种条件下的磁通值。对于孤立磁体Pc只与磁体的尺寸有关,退磁曲线和Pc线的交点就是磁体的工作点,Pc越大磁体工作点越高,越不容易被退磁。一般情况下对于一个孤立磁体取向长度相对越大Pc越大。因此Pc是永磁磁路设计中的一个重要的物理量。磁滞回线当铁磁质的磁化达到饱和之后,B将不再明显增加而趋于定值Bs, Bs为饱和磁感应强度,此时的磁场强度Hs称为饱和磁场强度。此后将H减小,B也随之减小,但滞后于H的减小,当H=0时,B并不为零,其值Br叫乘余磁感应强度,简称剩磁。欲使B亦变为零,必须加反向磁场,当H=-Hc时,B值变为零,铁磁材料完全退磁,称Hc为该材料的矫顽力。如果反向磁场继续增大,铁磁材料将反向磁化,当H=-HM时,磁化达到饱和B=-Bs,此后若减小反向磁场,使H=0,则B=-Br,当H=Hc时,B=0,至H=Hs时,B=Bs。回到正向饱和状态。这样便经历了一个循环过程,B随H变化而形成一闭合曲线,称为铁磁材料的磁滞回线,如下图所示1、矫顽力,内禀矫顽力?在永磁材料的退磁曲线上,当反向磁场H增大到某一值bHc时,磁体的磁感应强度B为0,称该反向磁场H值为该材料的矫顽力bHc;在反向磁场H= bHc时,磁体对外不显示磁通,因此矫顽力bHc表征永磁材料抵抗外部反向磁场或其它退磁效应的能力。矫顽力bHc是磁路设计中的一个重要参量之一。当反向磁场H= bHc时,虽然磁体的磁感应强度B为0,磁体对外不显示磁通,但磁体内部的微观磁偶极矩的矢量和往往并不为0,也就是说此时磁体的磁极化强度J在原来的方向往往仍保持一个较大的值。因此,bHc还不足以表征磁体的内禀磁特性;当反向磁场H增大到某一值jHc时,磁体内部的微观磁偶极矩的矢量和为0,称该反向磁场H值为该材料的内禀矫顽力jHc。内禀矫顽力jHc是永磁材料的一个非常重要的物理参量,对于jHc远大于bHc的磁体,当反向磁场H大于bHc但小于jHc时,虽然此时磁体已被退磁到磁感应强度B反向的程度,但在反向磁场H撤消后,磁体的磁感应强度B仍能因内部的微观磁偶极矩的矢量和处在原来方向而回到原来的方向。也就是说,只要反向磁场H还未达到jHc,永磁材料便尚未被完全退磁。因此,内禀矫顽力jHc是表征永磁材料抵抗外部反向磁场或其它退磁效应,以保持其原始磁化状态能力的一个主要指标。矫顽力bHc和内禀矫顽力jHc的单位与磁场强度单位相同。一般磁性材料的性能可以通过其四个参数来加以表述,即剩余磁感应强度(简称剩磁)Br(单位高斯Gs或毫特mT,1mT=10Gs),矫顽力Hcb(单位奥斯特Oe),内禀矫顽力Hcj(单位奥斯特Oe),**磁能积(BH)max(单位兆高奥MGOe),其中Br, Hcj, max三参数又是最直接的表示。Br, Hcj, max三者的相互关系Br的大小一般可认为能表明磁件充磁后的表面磁场的高低;Hcj的大小可说明磁件充磁后抗退磁及耐温高低的能力;max是Br与Hcj乘积的**值,它的大小直接表明了磁体的性能高低。一般来说,max 相近的磁体中,Br高,Hcj就偏低;Hcj高,Br就偏低。我们不能以Br, Hcj, max的高低来决定其好坏,要以产品的用途、所需的特性来确定三者的高低;即使在同等max值的条件下,也要看产品的用途、充磁的要求来决定采用高Br值、低Hcj,还是反之。在同等的条件下,即相同尺寸、相同极数和相同的充磁电压,磁能积高的磁件所获得的表磁也高,但在相同的max值时,Br和Hcj的高低对充磁有以下影响:Br高,Hcj低:在同等充磁电压下,能得到较高的表磁;Br低,Hcj高:要得到相同表磁,需用较高充磁电压;对于多极充磁,要采用Br高Hcj低的磁粉,而对于磁瓦,一般采用Hcj高Br低的磁粉,这是由于磁瓦用于的电机在使用中要承受较大的去磁电流和过载。2、剩磁永磁材料在闭路状态下经外磁场磁化至饱和后,再撤消外磁场时,永磁材料的磁极化强度J和内部磁感应强度B并不会因外磁场H的消失而消失,而会保持一定大小的值,该值即称为该材料的剩余磁极化强度Jr和剩余磁感应强度Br,统称剩磁。3、磁极化强度(J),磁化强度(M)现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的**力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。M与J的关系为:J=μ 0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,μ0=4π×10-7 H/m (亨/米)。
永磁材料和永磁电机的性能大全
永磁材料和永磁电机的性能大全
电机常用永磁材料的主要性能1.1 电机中常用的永磁材料电机中常用的永磁材料包括烧结磁体和粘结磁体,主要种类有铝镍钴、铁氧体、钐钴及钕铁硼等。铝镍钴材料在 20 世纪 80 年代以前使用较多。它具有优异的温度稳定性、时间稳定性和适用超高温使用环境条件等优点,在一些特殊用途如使用温度要求高、磁稳定性非常好的军用或仪器仪表等特殊使用环境的电机中才采用。铁氧体材料属非金属永磁材料,价格低廉。它主要用于对使用性能及体积要求不高及量大面广的经济系列微电机产品中。如玩具电机、日用电器电机、音像电机、办公设备及通用仪表电机、汽车摩托车电机以及工业用的小功率驱动电机等。钐钴材料是 20世纪 60年代中期兴起的磁性能优异的永磁材料,且性能非常稳定。钐钴从磁性能方面来说特别适合于制造电机,但由于其价格昂贵,主要用于研究开发航空、航天、武器等军用电机和高性能而价格不是主要因素的高科技领域的电机中。钕铁硼材料是 20 世纪 80 年代出现的被称为第三代高性能永磁材料. 磁性能高于钐钴, 热稳定性较差,且很容易锈蚀,必须进行表面防护处理, 但价格便宜,所以迅速得到推广应用。随着钕铁硼材料的不断更新,温度性能不断改善, 特别是 20 世纪 90年代以来,低温度系数、耐高温的钕铁硼材料已研制成功, 高性能耐热钕铁硼的工作温度可达 200℃,而且价格也不断降低,使大部分的工业和民用电机中都采用钕铁硼材料,并将取代大部分原铁氧体材料而应用于低价经济型电机中。粘结永磁材料是由粘结剂与永磁材料混合后压缩、注射或挤压成型等方法制成的一种复合型永磁材料, 包括粘结铁氧体、粘结铝镍钴、粘结钐钴及粘结钕铁硼。其中粘结钕铁硼是目前**的粘结永磁材料。它与烧结永磁材料相比有机械加工性能好, 成型容易, 可制成各种复杂的形状, 磁性能均匀一致性好以及容易进行多极充磁等优点。但粘结永磁材料的磁性能低于同类型的烧结磁体,磁能积约为相同材料的烧结磁体的 40%~70%。在粘结永磁材料中,粘结钕铁硼的前景**,粘结钕铁硼如果解决了工艺问题及提高质量后, 将成为应用前景最广的永磁材料。它目前主要用于小型无刷直流电机及步进电机等精密微电机中。1.2 永磁材料的主要性能(1)剩磁感应强度。永磁材料在外磁场中充磁到饱和后,当外磁场为零时,永磁材料所具有的磁感应强度值。此项指标数据直接关系着电机中气隙磁密的高低。磁感应强度值越高,电机的气隙磁密将可能较高,转矩常数、反电势系数等电机的主要指标将达到最佳值,电机的电负荷和磁负荷的取值关系才可能最合理,效率才能达到最佳。(2)矫顽力 Hc,(磁感应矫顽力 Hc b )。永磁材料在饱和磁化的情况下,当剩磁感应强度 Br 降到零时所需要的反向磁场强度。此项指标与电机的抗退磁能力即过载倍数和气隙磁密等指标相关。Hc 值越大,电机的抗退磁能力越强,过载倍数越大,对强退磁动态工作环境的适应能力越强。同时电机的气隙磁密也会有所提高。(3)**磁能积 BHmax。永磁材料向外磁路提供的磁场能量的**值。此项指标与电机中永磁材料的用量直接相关,BHmax 越大,预示着该种永磁材料对外磁路能提供的磁场能量越大,即在相同功率情况下电机中使用的永磁材料越少。(4)内禀矫顽力 Hc i 。该项指标是指当剩余磁化强度 M 降到零时的磁场强度值。退磁曲线上 B=0 时对应的 Hc b 值仅表示永磁体此时不能够向外磁路提供能量,并不代表永磁体自身不具备能量。但当 M=0 时对应的 Hc i 值却表示此时永磁体已真正退磁,自身已完全无磁场能量储存。虽然 Hc i 与电机工作点无直接相关,但它才是永磁材料的真正矫顽力,代表着永磁材料拥有磁场能量和抗去磁场的能力。内禀矫顽力的大小与永磁材料的温度稳定性密切相关。内禀矫顽力越高,永磁材料的工作温度才可能越高。(5)温度系数α。温度是对永磁材料磁性能影响的主要因素之一,当温度每变化 1℃时磁性能可逆变化的百分率称为磁性材料的温度系数。温度系数可分为剩磁感应温度系数和矫顽力温度系数。该项指标对电机的性能稳定性影响较大,温度系数越高,电机运行从冷态到热态时指标的变化越大,它直接限制了电机的使用温度范围。间接影响到电机的功率体积比。2 永磁电机及特点永磁电机中**功率已达到 1000kW,最小直径φ0.8mm,**转速 300000r/min,**转速 0.01r/min。永磁电机与电励磁电机相比,具有以下特点.2.1 结构简单, 可靠性高用永磁材料励磁,可将原电励磁电机中励磁用的极靴及励磁线圈由一块或多块永磁体替代,零部件大量减少,在结构上大大简化。同时由于省去了励磁用的集电环和电刷,不但改善了电机的工艺性,而且电机运行的机械可靠性大为增强,寿命增加。2.2 性能优异永磁电机,特别是采用稀土永磁材料的电机,气隙磁密可大大提高,电机指标可实现最佳设计,其直接效果就是电机体积缩小,重量减轻。不仅如此,较其它电机而言,永磁电机还具有非常优异的控制性能。这是因为:其一,由于稀土永磁材料的高性能而使电机的力矩常数、转矩惯量比、功率密度等大大提高。通过合理设计又能使转动惯量、电气及机械时间常数等指标大大降低,作为伺服控制性能的主要指标有了很大改善。其二,现代永磁电机中,永磁磁路的设计已较完善,加上稀土永磁材料的矫顽力高,因而永磁电机的抗电枢反应及其它去磁的能力大大加强,电机的控制参量随外部扰动影响大大减小。其三,由于用永磁材料取代了电励磁,减少了励磁绕组及励磁磁场的设计,因而减少了励磁磁通、励磁绕组电感、励磁电流等诸多参数,从而直接减少了可控变量或参量。综合以上各因素可以说永磁电机具有优异的可控性。例如,目前全数字永磁交流伺服电动机调速性能非常优异,正弦波交流伺服电机的调速比**可达 1:100000。步进电机和低速同步电机在采用永磁材料后,其输出转矩、动态响应特性等都有明显的改进和提高。因而与同规格电机相比,永磁电机的动态性能指标、稳态性能指标、控制性能指标以及可靠性指标等都比普通电机有较大的提高。2.3 高效节能永磁电机不但可减小电阻损耗,还能有效地提高功率因素。如永磁同步电机可在 25%~120%额定负载范围内均可保持较高的效率和功率因素。300W微 电 机 专 题2006 年第 7 期 16以内的微型永磁直流电机比同规格的电励磁电机效率高 10% ~ 20%。大量使用的风机和泵类负载的电机改为永磁电机后,综合节能效果十分显著, 功率越大,励磁损耗占总损耗比例越大,因而永磁电机效率高的优点越突出。3 永磁电机设计中应深入研究的问题3.1 永磁材料利用率永磁电机中,永磁材料成本占电机总成本的比例较大,因此如何节省材料,提高材料利用率是永磁电机生产厂家最关心的问题之一。理论上讲,永磁体的**磁能积点表示磁体能对外提供的能量最大,且从去磁曲线上也能求得该**工作点。但实际应用中绝非如此简单. 要具体研究电机的使用场合,分析电机应完成的预定功能,找出其对应的重点指标,以此来决定电机工作点选择的最佳位置,并合理确定永磁体的形状及体积,同时还必须考虑其加工工艺的影响。在综合考虑各种因素后达到电机在功能、性能、成本等各方面的最佳设计。3.2 过载与退磁磁性材料的退磁包括温度退磁、时间退磁和环境退磁等。又分可逆退磁和不可逆退磁两类。深入研究永磁材料矫顽力和内禀矫顽力与稳定工作温度的关系;温度系数对电机性能指标的影响程度以及退磁安全系数;基于磁性能变化引出的电机**工作温度的定义;可逆退磁和不可逆退磁在电机使用温度范围内所占比例以及对电机性能产生的影响;永磁材料退磁后的再充磁及重复利用等等问题是很有必要的。3.3 分析与设计现代永磁电机的理论与设计已比较成熟,不仅有众多的以磁路分析计算为主的设计程序和方法,永磁磁场的数值分析法也已普遍使用于工程实践中。但由于在永磁电机中,永磁体即作场激励源或磁路的磁源,又是磁场和磁路的组成部分, 同时永磁材料制造工艺、形状尺寸、充磁工具、充磁方法等都会使永磁材料一致性和均匀性不理想,有时分散性较大, 甚至同一牌号同一批次的永磁材料的性能数据都可能有较大的差异。因而永磁体分散性也给永磁电机的设计分析及永磁磁场的数值计算带来了一定困难,设计的准确性会受到影响。比如在场的理论和数值分析中永磁模型建立与等值问题;在工程磁路计算中的漏磁系数、局部退磁和电枢反应准确计算等诸多问题,都较电励磁电机分析计算的误差要大。3.4 充磁与测磁永磁电机设计是建立在永磁材料饱和磁化的基础上的。那么,用在电机上的磁体是否已被充分磁化饱和,若是永磁体是由磁性材料生产厂充磁并带磁供货,一般不存在问题, 但如果是在电机上整体充磁时,如何保证永磁体被充分磁化,如何在饱和磁化同时还能保持磁性能的均匀性和一致性等问题值得研究。同样,针对磁性能检测问题,也还有较多值得研究的问题。如带磁供货的磁体在电机制造厂如何对其进行有效的简便易行而又相对准确的入厂检测,而现在多数电机厂家无法在零部件阶段对永磁材料磁性能进行有效测量,往往只有到整机性能检测不合格时才能发现磁性材料有问题。3.5 抗腐蚀性钕铁硼材料的易腐蚀问题对电机的质量影响较大,而目前它的表面防护问题在国内未得到很好的解决,其采用的电镀等办法常出现表面镀层脱落使电机出现故障的现象。同时耐受特殊环境条件(如潮湿、盐雾及特殊气体等)的能力有限,影响了电机对特殊环境条件的适应能力。希望永磁材料在表面防护能力方面有更进一步的提高。3.6 磁性能稳定性、均匀性、一致性为保证电机性能在其寿命周期内不发生较大变化,特别是一些有特殊要求的军用电机,其可靠工作寿命要求长达 15 年以上,希望永磁材料的磁性能保持长期稳定。电机特别是高精度电机对永磁材料磁性能均匀性及一致性要求较高。磁性能不均匀将导致电机磁场不均匀,转矩波动增大, 发电机的输出电压纹波增大,线性度变差, 控制电机的精度指标降低等。另外,同一牌号的永磁材料在不同批次时的磁性能不一致,有时会导致电机成批不合格。因此,高精度电机要求永磁材料磁性能一致性能满足误差在 5%以内,均匀性误差在 3%以内。3.7 加工工艺永磁电机在制造过程中还有较多的加工工艺问题值得研究。比如粘接过程中的工艺参数如何掌握,是否会对磁性能产生影响。机加工过程中的冲击、振动和加工环境是否对磁性能产生影响,带磁零部件在工艺周转过程中以及在装配工序中如何采取保护措施等。永磁电机中的永磁体多采用带磁供货,这样虽然减轻了电机生产厂充磁的难度,但却大大增加了制造工艺难度. 如永磁无刷直流电机及永磁同步电机等常采用多极多块磁体直接粘在转子表面的表面贴装结构。多使用高性能的烧结钕铁硼,其粘接工艺较复杂且操作困难,当其转速较高时还会造成粘接可靠性不理想。如能将烧结磁体做成径向结晶充磁的多极环形结构,将大大简化电机转子的制造工艺。目前粘接磁体可以做到,但磁性能不高。如烧结磁体能实现并能批量供货且价格不高(有报道已有厂家在开展此项研究),将很有发展前途。
磁性基本知识
磁性基本知识
·N极:小磁针被自由放置时,指向地磁场北极的磁极称为北极(N极)。·顺磁性材料:磁导率略大于1的材料。·铁磁材料:磁导率远大于1(几十到几千)且显示磁滞现象的材料。·永磁材料:具高矫顽力的磁性材料。永磁材料磁化时需较强的外磁场,且被磁化后磁性不容易消失,可对外部空间提供稳定磁场。关于钕铁硼永磁体常用的衡量指标有以下四种:剩磁(Br)单位为特斯拉(T)和高斯(Gs) 1T=10000Gs将一个磁体在外磁场的作用下充磁到技术饱和后撤消外磁场,此时磁体表现的磁感应强度我们称之为剩磁。它表示磁体所能提供的**的磁通值。从退磁曲线上可见,它对应于气隙为零时的情况,故在实际磁路中没有多少实际的用处。钕铁硼的剩磁一般是11500高斯以上。磁感矫顽力(Hcb) 单位是奥斯特(Oe)或安/米(A/m)1A/m=79.6Oe磁体在反向充磁时,使磁感应强度降为零所需反向磁场强度的值称之为磁感矫顽力(Hcb)。但此时磁体的磁化强度并不为零,只是所加的反向磁场与磁体的磁化强度作用相互抵消。(对外磁感应强度表现为零)此时若撤消外磁场,磁体仍具有一定的磁性能。钕铁硼的矫顽力一般是10000Oe以上。内禀矫顽力(Hcj) 单位为奥斯特(Oe)或安/米(A/m)使磁体的磁化强度降为零所需施加的反向磁场强度,我们称之为内禀矫顽力。内禀矫顽力是衡量磁体抗退磁能力的一个物理量,是表示材料中的磁化强度M退到零的矫顽力。在磁体使用中,磁体矫顽力越高,温度稳定性越好。磁能积((BH)max ) 单位为兆高·奥(MGOe)或焦/米3(J/m3)退磁曲线上任何一点的B和H的乘积既BH我们称为磁能积,而B×H的**值称之为**磁能积,为退磁曲线上的D点。磁能积是恒量磁体所储存能量大小的重要参数之一。在磁体使用时对应于一定能量的磁体,要求磁体的体积尽可能小。·各向同性磁体:任何方向磁性能都相同的磁体。·各向异性磁体:不同方向上磁性能会有不同;且存在一个方向,在该方向取向时所得磁性能**的磁体。烧结钕铁硼永磁体是各向异性磁体。·取向方向:各向异性的磁体能获得最佳磁性能的方向称为磁体的取向方向。也称作"取向轴","易磁化轴"。·磁滞回线:铁磁材料在经过充磁、退磁、反向充磁、再退磁周期性变化时,所获得的关于磁感应强度(横坐标)相对于磁场强度(纵坐标)变化的闭合曲线
互联网店铺/站点